
Table of Contents

Key Takeaways 2

Introduction 3

Modular Thesis Refresher 4

Setting the Scene: Monolithic vs. Modular 4

Why Modular? 4

Data Availability Explained 6

The Data Availability Problem 7

Ethereum's Dencun Upgrade and EIP-4844 8

Impacts 9

Key Projects 11

Celestia 12

Summary 12

Consensus Layer 13

Data Availability ("DA") Layer 13

EigenDA 14

Avail 14

A Note on Danksharding 14

Key Tech Primitives 15

Primitive O: Erasure Codes, Used by All Protocols Featured in This Report 15

Primitive 1: Data Availability Sampling ("DAS"), Used by Celestia, Avail, and

Danksharding 17

Design 1: A Na'fve Design 17

Design 2: A Slightly Better Na'fve Design 18

Design 3: Basic Sampling 19

Design 4: Using Erasure Codes 21

Design 5: 2D Reed-Solomon, As Used by Celestia 22

Primitive 2: Dispersal Protocols, Used by EigenDA 25

Primitive 3: KZG, Used by Avail, EigenDA, and Danksharding 28

Outlook 31

Closing Thoughts 33

References 35

Latest Binance Research Reports 36

About Binance Research 37

Resources 38

1

www.relain.org

Key Takeaways

❖ The data availability ("DA") problem asks this question: how can we ensure that

all network participants can access the data of a newly proposed block? It

emerged as a necessity alongside rollups and the modular blockchain paradigm.

❖ Dedicated DA layers have largely emerged in response to the increasing costs of

posting data directly to major Layer-ls ("Lls"), especially Ethereum.

❖ This report is part of our technical series. We feature major DA players and

explain the technical primitives underpinning their solutions and their

anticipated impacts on products and future positioning.

❖ Celestia and Avail (and likely Danksharding) rely on data availability sampling

("DAS"). With DAS, light clients contribute to security very efficiently. A dozen or

so DAS operations give over 99. 9% confidence that all data is available. This

results in very high security, where data availability is guaranteed as long as

1-of-n or even 0-of-n full nodes are honest.

❖ Among the protocols discussed in this report, EigenDA is unique in its use of a

dispersal protocol. This may enable better scalability as individual nodes'

storage requirements drop as more nodes join the network. The downside is

that security requires a majority or supermajority of honest nodes.

❖ Avail and EiganDA (and Danksharding) use Kate-Zaverucha-Goldberg ("KZG"),

which has useful properties that allow validity proofs to be generated. Avail uses

this for faster DA finality and potentially better integration with zk-rollups.

❖ All the above projects use erasure codes extensively. This technique allows

protocols to achieve better (often optimal) trade-offs.

❖ In designing these protocols, tradeoffs include scalability, security, and finality

speed.

❖ The different protocols featured in this report made different design decisions

regarding these trade-offs. This will likely result in persistent differences in cost,

security, and finality speed, which may be deciding factors for project teams

(although KP! comparisons will likely fluctuate in the short term).

2

www.relain.org

Introduction

The era of modular blockchains is upon us and remains one of the overarching themes of

the crypto zeitgeist of the early 2020s. While Layer-2 ("L2") rollups, whether optimistic,

zero knowledge ("zk"), or other, have seen their fair share of headlines, one less discussed

part of the puzzle is the data availability ("DA") layer.

DA is primarily a developer-oriented concept; the user of a DA layer is a rollup developer,

not the end user. Users do not typically interact with transaction data, and in many cases,

some might not feel particularly bothered about where and how their data is published or

made available (look no further than many contemporary Web2 applications with billions of

users). However, the impact of DA is huge, as it is the key determinant of a rollup's costs,

which undoubtedly affects the end user. Lower DA costs translate directly into lower rollup

costs, not only improving the user experience but also opening up new areas of innovation

for developers.

The Ethereum rollup DA market is currently dominated by native Ethereum DA. This

dominance is expected, given that the only other major alternative, Celestia, went live fairly

recently. Other than Celestia, we also have the likes of EigenDA and Avail, alongside some

others, on the horizon. On the Layer-1 ("L1") side, Ethereum recently completed its Dencun

upgrade, which featured EIP-4844 (also known as "Proto-Danksharding"), a long-awaited

upgrade targeted specifically at reducing Ethereum's native DA costs. The impact of that is

recently being made clear in reduced L2 rollup transaction fees. A key theme to watch for

the future will be whether dedicated DA layers like Celestia will win out or eventually be

dethroned by Ethereum's long-term vision of full Danksharding.

In this report, we start by examining the basics of data availability and why it matters. We

then cover Ethereum's recent Dencun upgrade before diving into the dedicated DA layers

(Avail, Celestia, and EigenDA). We provide a technical overview of the underlying primitives

used by each project and provide some comparative analysis. We end the report with an

outlook for the DA market and some interesting questions to consider as things evolve.

This is part of Binance Research's Technical Series. The initial sections lay out the

landscape and key players in this space. We gradually focus more on technical topics,

ultimately diving into the key primitives underpinning the main players' solutions. Those

with a technical background may find these sections more to their interest.

Note: We may use the term "rol/up" as a catch-al/ to refer to various types of L2 scaling solutions, including

roll ups, validiums, and optimiums. More details about the exact differences between these solutions can be found

on the L2 Beat and Ethereum websites.

3

www.relain.org

Modular Thesis Refresher

Setting the Scene: Monolithic vs. Modular

Before diving into the modular blockchain thesis, let's quickly recap the concept of

monolithic blockchains. Defining a blockchain at its most basic level as an immutable

ledger of transactions, we can broadly classify the majority of blockchains, at least those

with notable value attached to them, as monolithic blockchains. To meet its fundamental

purpose of recording valid transactions and data chronologically, a blockchain must

perform four critical functions:

• Execution: processing transactions to update the state of the blockchain.

• Settlement: resolving disputes, verifying the validity of transactions, and ensuring

the finality of transactions.

• Consensus: reaching an agreement between validators or miners on transaction

ordering, e.g., Proof-of-Stake ("PoS"), Proof-of-Work ("PoW"), etc.

• Data Availability ("DA"): ensuring transaction data is available for the entire

network to view.

Monolithic blockchains, such as Ethereum and Solana, perform all of these functions on the

same layer and in a generalized manner. Modular blockchains, on the other hand, seek to

separate these functions across multiple different chains.

Figure 1: Monolithic vs. modular blockchains

Source: Binance Research

Why Modular?

Monolithic

Execution

Settlement

Consensus

Data Availability

Modular

Execution

Settlement

Consensus

Data Availability

The crux of the modular blockchain thesis is about the efficiency generated through the

separation of roles. Instead of a single network handling all core functions required for a

4

www.relain.org

functioning blockchain, the modular approach advocates for a separation of duties, such

as execution or DA, across specialized networks.

By separating the different components of a monolithic L1, a modular blockchain can

be optimized for specific functions at each layer of the stack, thereby enhancing

decentralization, security, and scalability where necessary. The rationale is that the sum of

these layers will be able to achieve higher levels of customization and efficiency.

Initially gaining traction with Ethereum's shift towards a rollup-centric architecture, the

modular approach has become an increasingly visible part of the crypto ecosystem over the

last few years. Today, Layer-2 ("L2") rollups, which enable the separation and optimization

of the execution environment, represent the most popular type of modular blockchain. L2

rollups like Arbitrum One and OP Main net execute and bundle (or 'roll up') numerous user

transactions into a single transaction, which is then submitted to the L1 (Ethereum in this

case) for settlement.

While L2s have been growing with strength, one of the critical bottlenecks in realizing

their full scalability has been in the DA layer. L2 rollups post their data to Ethereum using

'calldata', which is neither optimized for L2s nor scalable to meet their DA needs. (The

DA problem is explained in more detail below.) In fact, as depicted in Figure 2 below,

historically, upwards of 70-90% of rollup transaction fees can be attributed to these

data posting costs.

Figure 2: L1 publication fees have historically been the dominant cost driver for rollups,

particularly optimistic rollups

75%

0 50%

25%

Nov-23

■ L2 Execution Fees ■ L 1 Publication Fees

Dec-23 Jan-24 Feb-24 Mar-24

Source: Source: Dune Analytics (@optimismfnd), Binance Research, as of April 9, 2024

Apr-24

5

www.relain.org

Thus, there has been a strong focus on advancing DA capabilities, as evidenced by the

emergence of dedicated DA solutions such as Celestia, EigenDA, and Avail, among others.

Ethereum's recent Dencun upgrade, which included EIP-4844, was also primarily focused

on improving Ethereum's DA capabilities. Before we dive into these projects and EIP-4844

further, let's explore a brief technical overview of DA.

Data Availability Explained

In any blockchain system, the DA layer is responsible for ensuring that transaction data

is systematically made available on-chain. This is critical for maintaining the chain's

liveness and integrity and verifying the validity of transactions.

In practice, every monolithic Ll blockchain implicitly ensures DA. For example, all

Ethereum full nodes download all transaction data in the process of validating a new block,

which itself ensures DA for all of the transactions. This is somewhat of a background

process that has historically been given relatively little attention. However, the proliferation

of L2 rollups and the modular thesis have given the issue more visibility.

Specifically, rollups highlight the DA issue because of how they operate. As a reminder,

rollups execute transactions away from the L1. and then post their transaction data to

it. There are two types of rollup solutions: optimistic and zero knowledge ("zk"). At a high

level, the primary difference between the two is how they prove the validity of their

transactions. Optimistic rollups compress and post all of their transaction data, assume

that it is valid, and use fraud proofs in the case of a challenge. Zk-rollups, on the other hand,

simply post validity proofs to the Ll to prove the validity of each transaction. This means

that, while optimistic rollups have to post all of their transaction data to the Ll, which is

expensive and time-consuming, zk-rollups only have to provide validity proofs. Both types

of rollups post this data to Ethereum using "calldata." Calldata is another name for the

data passed along with an Ethereum transaction that enables information exchange.

However, we should note that calldata is neither optimized nor scalable enough to meet the

needs of L2s posting their data back to Ethereum. In addition, calldata lives permanently

on-chain, which contributes to state bloat, i.e., imposes a storage load on Ethereum full

nodes. We should note that since EIP-4844 recently went live, most major rollups switched

to posting their data on a combination of calldata and 'blobs', which has started reducing

this burden. (EIP-4844 is explained below.)

When rollups post their transaction data (or validity proofs) to the Ll for settlement, they

are essentially using the Ll for DA. For example, when Arbitrum One posts transaction data

to Ethereum, they are using the native Ethereum DA layer (although we should note that

calldata was never initially intended to be used for DA purposes but has been more of a

solution in the absence of dedicated EIP-4844 blobspace).

6

www.relain.org

However, due to the resource constraints of Ethereum, namely chain congestion and limited

space for data storage, L2 throughput can be limited, and extra costs can arise. To post

data to Ethereum, L2s have historically been subject to the same fee market, block size

constraints, and block times as regular transactions (prior to EIP-4844). In addition to

imposing a considerable load on full Ethereum nodes that must download all of this data,

L2s are also subject to spiking fees, which can happen during periods of peak demand. As

previously mentioned, over 90% of L2 fees can sometimes be driven solely by DA costs.

The Data Availability Problem

Data availability refers to the confidence a user can have that the data required to verify

a current block is truly available to all network participants<1> . Following on, the data

availability problem refers to the challenge of proving this fact to the entire network without

requiring all nodes to download all of the data. The idea is that any independent verifier

should be able to download the required transaction data to verify that a block is valid.

"Data availability refers to the confidence a user can have that the

data required to verify a current block is truly available to all

network participants."

We should note that DA is not the same as data retrievability, i.e., DA does not imply a

historical database of a blockchain's transaction data; it is more akin to a short-term

guarantee that you can download the data and that it is available. We can consider the

mental model of publishing data to a website, based on which we can assume that enough

people saw the data or were able to download it. However, publishing something on a

website is not a guarantee that it will be available to download one year later. This is what

DA is about - it is about the strength of the guarantee that the data was published and

made available for everyone to see or download.

"We can consider the mental model of publishing data to a website,

based on which we can assume that enough people saw the data or

were able to download it. However, publishing something on a

website is not a guarantee that it will be available to download one

year later. This is what DA is about - it is about the strength of the

guarantee that the data was published and made available for

everyone to see or download."

Although the full transaction data is necessary for independently verifying blocks, the DA

problem tells us that requiring all nodes to download all transaction data is a barrier to

7

www.relain.org

scaling. Solutions to the DA problem aim to provide sufficient assurances that the full

transaction data is made available for verification to network participants that do not

download and store the data for themselves.

Celestia, Avail, and EigenDA have emerged and aim to allow data to be stored cheaply,

while guaranteeing DA, thereby creating a specialized DA layer and giving L2s options

outside of the native Ethereum DA layer.

Ethereum's Dencun Upgrade and EIP-4844

Ethereum's Dencun hardfork went live on March 13, 2024, and consisted of several

upgrades, including the much anticipated EIP-4844 (also known as "Proto-Danksharding").

EIP-4844 was a DA-focused upgrade and introduced a new transaction type to

Ethereum called a "blob-carrying transaction," which is akin to a regular transaction but

also carries an extra piece of data called a "blob." Blob-carrying transactions are not

executed by the EVM but in the consensus layer instead and are only stored temporarily

rather than permanently like regular Ethereum transactions. Blobs are also priced in a

separate gas market and are thus not competing with the Ethereum Ll gas market.

Rollups can choose to post their data on these blobs rather than on the Ethereum L1 via

calldata, as they have historically done. Overall, the combination of blobs' temporary

nature and separate gas market, alongside other features, helps create an optimized and

cheaper solution for L2 rollups to publish their data for DA purposes.

Figure 3: Difference between Ethereum L1 block space and EIP-4844 blob space

Feature Ethereum L1 block space

Seen by all nodes? Yes

How long is data stored? Permanent (forever)

Visible to EVM? Yes

Gas market Main Ethereum Ll gas market

Source: EIP4844.com, Binance Research

EIP-4844 Blob space

Yes

-18 days

No

Separate blob gas market

8

www.relain.org

Impacts

As expected, since the implementation of EIP-4844, the cost of Ethereum's L2 rollups has

significantly shrunk, impacting both user fees and L2 profitability.

When we consider the cost of posting data on Ethereum, the average hourly cost for some

of the largest L2 rollups is down from over US$270 to under US$25. Given that an L2

rollup's profit is essentially the transaction fees minus the cost of posting data, this has a

direct impact on L2 profitability.

Figure 4: The cost of posting data to Ethereum has seen an average decrease of 72%

across the top Ethereum L2s

200.0

w 150.0
(/)

0
u
(/)
� 100.0
�
:, 0
I
cii
D..

r
50.0

174.0

17.8

Arbitrum

■ Pre-Dencun ■ Post-Dencun

172.7

114.4

2.2 2.2

Base OP Mainnet

Source: Dune Analytics (@21co), Binance Research, as of April 9, 2024

87.7

54.8

2.3

ZkSync Zora

As previously highlighted in Figure 2, a significant proportion (up to 90%) of major rollups'

costs were related to DA costs. Given EIP-4844 materially lowered these, the transaction

fees to interact on the rollup have also decreased quite significantly. Ethereum L2 users

are now seeing fees that are down by up to 90% compared to pre-Dencun.

9

www.relain.org

Figure 5: L2 transaction fees have decreased by 50-95%

■ 300 before Dencun ■ Post-Dencun - Difference

0.5 0.39 0.37
0.322

0.789 0.199

0.115

0.014

-0.5
-68.9%

-83.1%

-93.0%

-1.0
Arbitrum Base OP Mainnet ZkSync Zora

Source: Dune Analytics (@21co), Binance Research, as of April 9, 2024

While the above two charts paint a relatively positive picture of EIP-4844's impacts so far,

when we consider transaction throughput (measured by transactions per second), a more

nuanced discussion arises.

We must consider the potential limitations of Ethereum's current and short-term

scalability. For instance, even under EIP-4844's ideal state of full Danksharding, the

theoretical TPS achievable with dedicated DA layers is significantly higher<2>, indicating

that L2s opting to use solutions like Celestia could benefit from cost efficiencies and

potentially higher margins.

So, how do the likes of Celestia, EigenDA, and Avail promise such levels of transaction

throughput? In the next section, we take a look under the hood.

10

www.relain.org

Key Projects

In the next two sections, we will focus on the technical underpinnings of DA solutions.

Before we dive in, let's compare the dedicated DA layers featured in this report in Figure 6

below.

Figure 6: Comparing notable DA projects in the market

Main advantage

Live?

Theoretical

scalability

DA guarantee

safety threshold

Liveness/

Censorship

resistance

threshold

DA "finality"

Data Storage

Burden

Celestia

First mover, pioneer in the space

Mainnet

High

Constrained by high storage

burden of full storage nodes

Very high

DA layer: improves with more

light nodes. 1-in-n (potentially

0-in-n) honest full storage nodes.

Consensus layer: 1-in-n (due to

fraud proof mechanism)

TVL of staked tokens

Medium

Requires challenge period

Large

Full storage nodes: replicate full

dataset

ValidatorsLFull consensus nodes:

block hashes only

ElgenDA

Likely more scalable, by having

lower safety threshold

(supermajority rather then the

onerous 1-in-n honest nodes)

Testnet

Very high

Constrained by communication

overhead of dispersal protocol

and Ethereum's latency for

storing block headers

Regular

Depends on parameters. Likely

requires majority or

supermajority honest nodes,

which are secured by EigenLayer

Security from EigenLayer

re staking

Fast

Uses KZG validity proofs, but

Ethereum latency for block

header finality

Medium

Network nodes (EigenDA}: data

shards

Ethereum nodes: block hashes

only

Avail

"Celestia with faster DA finality"

Testnet

Medium-high

Likely similar to Celestia,

although may be a little lower due

to KZG

Very high

0-in-n. No need for fraud proof

mechanism due to KZG validity

proofs. Similar to Celestia

otherwise

TVL of staked tokens

Very fast

Uses KZG validity proofs

Large

Nodes store full dataset

11

www.relain.org

Communication

Burden

Decentralization

Level

Chains served

Medium

Communication of full data for

storage nodes

High

Any

Rollups' own or use existing

Medium-High

Communication overhead of

disperser protocol

Medium

EigenLayer requires enough

Ethereum nodes to opt in.

Centralization of EigenLayer at

this early stage.

Any

Medium

Same as Celestia

High

Any

(for settlement) settlement layers. Blobstream a Ethereum likely a natural choice Likely greater support with Nexus

pre-built solution

Low
Medium

Reference document published
Solution produced in 2018.

Low
Maturity

Mainnet launched
Solution produced in 2021 in 2021

Delivery format Layer 1 blockchain (Tendermint)
Network secured via EigenLayer Layer 1 blockchain (likely

re staking Substrate)

Source: Project white papers, Binance Research, as of 26 March, 2024

Protocol designs are changing constantly, especially for protocols that have yet to launch.

The information here is based on currently available information in the public domain,

which may change quickly.

Celestia

Summary

Celestia is the first dedicated project aiming to solve the scalability problem by providing a

DA layer. Celestia is designed simply to make data available without checking if

transactions are valid. The team pioneered this idea in their research paper<3) published in

2018/19 with Vitalik Buterin. Having a high-performance DA layer removes a key constraint

for rollups to reach very high throughputs.

At a high level, Celestia consists of the 1) the consensus layer, 2) data availability layer, and

3) bridge nodes that connect them.

12

www.relain.org

Consensus Layer

The consensus layer is a Cosmos appchain. Consensus nodes accept data from clients

(requests to store data), process the data, and arrange these into blocks. A selected

validator produces and publishes the block. Validators consider a block valid if the

underlying data is indeed available. The block includes transactions from clients and

extended data (see the erasure code section).

A compromised consensus layer can produce incorrect erasure encoding. To counter this

issue, full nodes can submit fraud proofs if this happens. This feature is why some refer to

Celestia's design as "optimistic"; like optimistic rollups, there is a challenge period, and if

no fraud proofs are submitted, the block is considered valid. Therefore, Celestia does not

require a majority of the consensus to be honest to guarantee data availability.

While Celestia can resist some attacks from a compromised consensus layer, ultimately,

such a situation will eventually compromise the system.

Data Availability ("DA") Layer

The DA layer contains the core functionality of Celestia, implementing the key innovation in

Celestia's research paper. This is where information is actually stored and guaranteed to be

available to clients (e.g., rollups).

There are two nodes on this layer: full storage nodes and light nodes. At a high level:

• Full storage nodes ("FSNs") actually store the data and allow other parties to

download them.

• Light clients ("LCs" or "light nodes") ensure that full storage nodes uphold their

responsibility.

Unlike most blockchain designs, Celestia's LCs directly contribute to security in Celestia's

DA layer. They do so via data availability sampling ("DAS"). LCs sample random data chunks

from FSNs. If FSNs cannot send a valid response, LCs submit a fraud proof.

DAS allows LCs to gain high confidence that full data is available by only downloading small

chunks of data. For each sample, there is a roughly 25% chance of detecting whether the

full original data is not available. After only 15 samples, there is around a 99% probability

of detecting any missing data (we explain why in further detail in the DAS section). The

system becomes more secure with more LCs.

Theoretically, due to DAS, there only needs to be one honest FSN to have DA. That said, LCs

need correct block headers from consensus nodes, which are secured by the Celestia chain

consensus and a fraud-proof mechanism.

Key tech primitives used: erasure codes and DAS

13

www.relain.org

EigenDA
Currently in its testnet phase, EigenDA is another dedicated data availability solution. The

end product for clients (i.e., rollups) is similar, but EigenDA guarantees DA differently. First,

EigenDA is planning to be an actively validated service ("AVS") on Eigenlayer. Being an

Eigenlayer AVS means that the crypto-economic security is dependent on Eigenlayer,

which has slightly different game theory dynamics than a PoS blockchain.

Secondly, instead of DAS, EigenDA is being built around a dispersal protocol. Unlike

DAS, a dispersal protocol can guarantee data availability as long as the threshold number of

nodes is honest. The team released a paper<4l describing a protocol called ACeD. The

design appears to have shifted a little since.

Key tech primitives used: erasure codes, dispersal protocol, and KZG (in new design)

Avail

Avail's design is more similar to Celestia (at a high level) than EigenDA. It is also designed to

be an independent Ll blockchain and utilizes DAS in a mostly similar way to Celestia.

In some sense, Avail has benefitted from being a later entrant; its design can be seen as an

improvement over Celestia's current design. A key difference is that it uses KZG to

produce proof that the block producer's erasure codes are correct. This means that LCs

can perform DAS immediately after a block is produced, rather than waiting for a challenge

period to be over. Avail thus achieves faster DA finality. The downside is that it takes more

computation to produce these KZG proofs.

The use of KZG makes Avai1 <5l potentially more in line with zk-rollups. Zk-rollups achieve

faster finality than optimistic rollups. Also, the native use of KZG could potentially result in

some optimizations as many zk-SNARKs protocols utilize KZG.

Key tech primitives used: erasure codes, DAS, and KZG

A Note on Danksharding

Danksharding is likely to utilize both KZG and DAS, making it somewhat similar to Avail on

the surface. However, Danksharding is not meant to be a dedicated DA layer, unlike the

other protocols, but instead a DA layer built into the Ethereum base layer. This would make

Ethereum both a settlement layer and a DA layer.

14

www.relain.org

Note that Proto-Danksharding is already live, but it mostly does not implement the

primitives we discuss here. It is a temporary solution before Danksharding, introducing a

non-permanent, hence cheaper, block space to Ethereum.

It is important to note that neither Proto-Danksharding nor Danksharding are

"sharding" anything in the traditional sense.

Key Tech Primitives

The goal of this section, the main body of this report, is not to extensively describe the

architecture of specific protocols but to dive deeper into four important technological

primitives: erasure codes, data availability sampling ("DAS"), dispersal protocols, and KZG.

We will see from first principles the reasons for key product differences between Celestia,

EigenDA, and Avail.

Primitive 0: Erasure Codes, Used by

All Protocols Featured in This Report

Erasure codes are used by all protocols featured in this report and are also the foundation

for two other primitives.

Erasure codes (as well as error-correcting codes) are extensively used in communication

and data storage. Suppose you make a call from your mobile phone. Without erasure

coding, any data lost during transmission could result in noticeable glitches or even cause

the call to drop. With erasure coding, lost data can be reconstructed.

This is done by adding data redundancy. A 1kb dataset is extended to, say, 2kb. For an

optimal erasure code, any random 1kb of data can be lost in transmission, and the original

data can still be recovered.

Erasure codes are also used in data storage to improve resilience to data loss or corruption.

How is this related to data availability?

Erasure codes are used in DA protocols, not for making data resilient per se. It is used for

its many useful properties, which you will see in later sections. For example, when used in

combination with DAS, it results in a very efficient method for light clients ("LCs") to ensure

full nodes are indeed making data available.

For now, it suffices to understand the basic concept of what erasure codes are.

15

www.relain.org

Technical Explanation (for the math-Inclined)

Erasure codes add redundancy to data. In an oversimplified example, take a two-element

dataset {2, 3}. We first represent this data on a plane, where the x-axis is the position of the

data (e.g., incrementing from 0, 1, 2, ...) and the y-axis represents the data value (2 and 3 in

this case). We convert this two-element dataset into a four-element dataset simply by drawing

a straight line that connects the two points.

Original data

3

Original data: 2, 3.
We plot this on a

graph

Extrapolate: add data

redundancies

3

5 ---

4

--

y = x+2

Extended data �codes", by
extrapolating. Our data is

now 2, 3, 4 ,5

Lose two
data
points

Interpolate: we evaluate the

value at x=1 to recover the

lost data

y = x+2

5

--- Evaluate at this point

To recover data at point
x=1, draw a line between 2

and 5, and evaluate the
y-value at x=1

Indeed, Erasure codes such as Reed Solomon work in this manner. The main difference is that

it uses polynomials, not straight lines, because arbitrary data will not fit on a straight line.

There is a unique polynomial of lowest degree that crosses an arbitrary set of points. It can be

found using some fancy math (e.g., Lagrange interpolation). Using polynomials, the chart will

look more like this:

The concept is the same as our straight line extrapolation and interpolation. We can derive the

polynomial equation without the full dataset. If, for example, the data at x = 5 is missing, we

can evaluate the polynomial at x = 5. The y-value is the recovered missing data.

16

www.relain.org

Primitive 1: Data Availability

Sampling ("DAS"), Used by Celestia,

Avail, and Danksharding

Data availability sampling enables very high confidence in data availability with minimal

hardware requirements.

The aim of DAS is to allow resource-constrained LCs to gain confidence that full storage

nodes ("FSN") are indeed making data available.

Let's imagine this scenario: Bob has too many items (1,000 items to be precise), so he asks

his friend Alice to store his items. Despite Alice's kindness, Bob is paranoid and doesn't

trust her. He insists on having a mechanism to check that Alice still has all his items.

How can we design such a system?

Design 1: A Na"ive Design

Bob (on the left) periodically requests that

Alice (on the right) send the full package of

1,000 items back to him. He then checks to

see if everything is still there. Once he's

satisfied, he sends the package back to Alice

for long-term storage. Doing this will give Bob

the comfort he needs, because if Alice throws

anything away, Bob will be able to see that

the item is missing.

Of course, there are several problems with

this system. Firstly, Bob lacks space. He

needs to find a temporary space in his hallway

to hold all his items while he checks them.

Secondly, they need to ship many items, so

their courier bills will be high.

In a DA scenario, Alice is analogous to the

FSN and Bob the LC. Design 1 works but

requires the LC to temporarily procure more

memory to store all items (e.g., short-term

Pis can
you store
my stuff?

Can you prove you still
have my stuff? Can I have
my box back for a while?

I've checked everything.
Returning the box to you

now.

Confidence level

that all items still

exist =100%

Here you
go

renting a cloud service). It also has high communication overhead because the FSN sends

17

www.relain.org

the LC the entire dataset. Note that in a DA protocol, the LC does not need to "send back"

the data to FSN, unlike in our analogy.

Design 1 shows us the purpose and basic interactions that happen in DAS.

It is highly inefficient, though. Can we do better?

Design 2: A Slightly Better

Na"ive Design

Bob asks Alice to show him all 1,000

items, one by one. As before, after

this procedure, Bob has 100%

certainty that Alice has kept all the

items.

This alleviates the storage problem.

The LC no longer needs to procure

temporary storage, but network

communication remains high.

Items in here
labelled 1-1000

Pis can
you store
my stuff? 10

@ (;:)

Can you show me all
items one by one?

Thanks and the second
item?

Item no. 1

Item no. 2

\

Here ...
have a

look

Design 2 shows us how working with

a chunk of data at a time almost

eliminates storage requirements for

the LC.
(;;)

� (;:) Repeat for all 1000

Confidence lave/LI ----------,

t:O

i

te

m

s

that all items still ~

exist =100%

18

www.relain.org

Design 3: Basic Sampling

Pis can
you store
my stuff?

�
\::::::) I

Items in here
labelled 1-1000

I[]

® :)CJ
Item no. 542 Here ...

Instead of having proof (100% certainty),

we design a system where Bob can be

highly certain that Alice is doing her part.

We modify Design 2 such that Bob

requests Alice send him a list of x items

rather than all 1,000. Alice cannot know in

advance what that list is. Otherwise, she

can throw away all other items and keep

only the ones she knows Bob will sample. Show me item no. 542

\
have a

We illustrate how this looks if x = 500.

Let's say Alice produces a valid response.

How confident is Bob that Alice has ALL

his items now?

Bob sampled 50% of the items, so a

starting point is to say he is 50%

confident. However, due to the random

nature of sampling, it turns out that Bob is

probably more than 50% confident. In

fact, Bob is at least 50% confident - he

could be more confident depending on

his beliefs about Alice's behavior.

Q

Now item no. 97

Q
Confidence level
that all items still
exist >50% after 500
rounds

look

� 0

Item no. 97 G?
Here ...

0
-

Specifically, he is exactly 50% confident if he believes that the only way Alice could

misbehave is to throw away one item. His confidence is higher than 50% if he believes Alice

could have thrown one or more items away.

19

www.relain.org

Technical Explanation (for the math-Inclined)

Let's drastically simplify the numbers. Assume Alice stores 4 items and Bob samples 2 items.

D represents the scenario where Alice is missing items but gets away with it.

If Alice produces a valid response (i.e., successfully shows the items that Bob requests), then

Bob's confidence, C, that Alice still has all his items is:

C = 1-P(D)

To calculate P(D), we can use combinations. The number of possible ways Bob can sample 2

items out of 4 is:

C/=6

Let's assume Alice throws away 1 item. In this scenario, the number of ways Bob can choose

2 items and fail to catch Alice cheating is c/-1 = c/ = 3. Therefore, the probability she gets

away with it is:

P(D) = C/ / C/= 3/6 = 50%

Therefore, Bob's confidence level is:

C = 1-P(D) = 1 - ½ = ½ = 50%

But Alice could have also thrown away 2 items and gotten away with it. If we rerun the above

calculations, we get:

C = 1-P(D) = 1 - C/ /C/ = 1-¼ = -83%

Alice could not have possibly thrown away 3 items and gotten away with it. If she did, she

would have 1 item left. Bob samples 2 items and has a 100% chance of catching her

misbehavior.

Therefore, Bob's confidence that Alice in fact has all items is 50% ::,; C::,; 83%. If Bob has no

opinion on Alice's possible behavior, we could assign an equal chance that Alice may have

thrown away either 1 or 2 items and got away with it. His overall confidence is thus:

C = (½ + ¾)/2 = ½ = -6 7%

20

www.relain.org

To recap, if Alice is supposed to store four items, Bob chooses two randomly and asks that

she show them. Alice successfully does so. Bob is now 67% sure that Alice still has all four

items with her.

Bob sampled 50% of the items and got 67% confidence. Notice the confidence level is

higher than the percentage sampled. This is because Alice cannot predict Bob's random

sampling choices. It is the power of random sampling.

Design 3 demonstrates that sampling is more efficient. If we can live with confidence below

100%, we can reduce resource requirements for the LC.

"Bob sampled 50% of the items and got 6 7% confidence. Notice the

confidence level is higher than the percentage sampled. This is

because Alice cannot predict Bob's random sampling choices. It is

the power of random sampling."

Design 4: Using Erasure Codes

Design 3 is still limited. With 50 items and a sample size of 25, Bob's confidence will be

between 50% and 96% (where 96% is the result of assuming equal probability, as we did

above). In reality, his confidence would be closer to 50%, because Alice is more likely to

discard only a few items because it is easier to get away with that. Bob needs to sample

about 80% to have approximately 90% confidence. In crypto, 90% confidence is low. How

would you feel if, for every transaction you make on chain, there is a 10% chance of your

tokens disappearing?

Also, if Bob samples 80%, he might as well just sample everything and gain 100%

confidence. This would simply be Design 2.

Design 3 is not workable in its current form. But can we improve our system? Can we

sample 50% of the items to gain 99% confidence, for example? How about sampling

1.% to gain 99.99% confidence?

The game-changer is a system where sampling a fixed number rather than a

percentage results in a certain level of confidence. There is a system where you can

sample 14 items to gain 99. 99% confidence. Notice the difference: we've moved from

percentage of items to number of items, regardless of the total size. If Bob has 1,000

items, he samples 14 items (1.4%) to gain 99.99% confidence that all items still exist. If he

has 1,000,000 items, he still samples 14 (0.0014%) items to gain 99.99% confidence.

14 samples will give over 99. 99% confidence (1-in-10, 000 error).

At 20 samples, it is 1-in-a-million. Using erasure codes is extremely

efficient.

21

www.relain.org

Technical Explanation (for the math-I nclf ned)

We previously described erasure coding. The equation of the unique polynomial of lowest

degree can be found, such that its x-values are the position of the data element (0, 1, 2, ...)

and its y-values are the corresponding values in the dataset. It may look something like

below.

We then extend the dataset by evaluating points at different x values. For example, if our

dataset size is 1000, we have x-values {0, 1, ... , 999}. We then evaluate the y-values at

points {1000, 1001, ... , 1999}, which doubles the dataset size. This double-sized dataset (all

the y-values) is the coded data, which is stored.

Later on, as long as we still have any arbitrary 1000 out of the total 2000 data points, we will

be able to reconstruct the same polynomial equation and derive the original dataset.

The key insight is that the original data can be reconstructed as long as 50% of any of the

extended data points are available. Therefore, in order for data to become unavailable, the

storage nodes need to discard >50% of the data points. If 50% of the data is missing, the LC

has a 50% chance of detecting this each time it samples the data. Therefore, just one

sampling procedure gives a 50% confidence level to the LC.

We have successfully arrived at a design where the LC can sample very few items from the

FSN and gain high confidence that the FSN has the complete range of data available.

Design 5: 2D Reed-Solomon, As Used by Celestia

The design above already solves our data sampling problem. So why does Celestia go even

further?

It is mostly to solve other problems that arise in practice. So far, we have assumed Bob is

familiar with his list of 1,000 items. But DAS, in fact, resembles a situation more akin to the

following:

22

www.relain.org

Bob asks Alice to store his items. Carol then checks whether Alice still has them. However,

Carol does not know what items Bob should have.

How does Carol do this check when she doesn't even know what the items should be?

This is done using Merkle commitments and proofs. The entire block of items is first

committed, i.e., compute the Merkle roots. With these roots, Carol can request a random

item from Alice, say item 549. Alice sends a Merkle proof to Carol, which includes revealing

the item. Carol can verify the Merkle proof against the Merkle root. A successful verification

is a cryptographic proof that the item is indeed item 549.

This is a similar process that LCs use to retrieve data from a full node and have

cryptographic confidence that it is valid. If you understand Merkle proofs, this should make

sense. If not, we offer an imperfect analogy of using a fine weighing scale in this diagram:

Step 1:

Step 2:

Party A shares the
weight of an item. The
weight is analogous to

the "commitment"

'------>

Does the

weight match?

Assume people have access to weighing scales so fine that it's not feasible to find a second

item with exactly the same weight reading. Alice can commit to her item (the audio speaker

in the illustration) and share the weight (the commitment) with Bob. At a later time, Alice

sends the speaker to Bob. Bob is unsure if it is the exact speaker that Alice showed him

before. In order to check this, he weighs the speaker. If the weight matches, then he can be

confident that it is the same speaker.

This analogy actually describes a hash function like SHA256. Merkle trees are more

complex. They can commit to large datasets by sharing just a single hash.

We've now reached the point commonly discussed. Celestia uses 2D Reed Solomon

("2DRS"). Design 4 describes 1D Reed-Solomon ("1DRS"). The concept is the same, but

the main advantage of using 2DRS is to reduce proof sizes and verification time complexity.

The downside is much larger root hash sizes. Additionally, LCs need to sample more times

(approximately double) to gain the same confidence level that data is available.

23

www.relain.org

Technical Explanation (for the math-Inclined)

In a 2DRS, the LC obtains the data root, column roots and row roots. When the LC requests a

data point, the FSN can choose to provide the Merkle proof either along the row or column. If

the FSN provides a row (column) Merkle proof, the LC can verify it against the row root

(column root) that it obtained from the consensus nodes.

r1

rk 0

0

r2k

Celestia's 2D diagram

dataRoot

t
columnRoots

original tx
data

extended
data

extended
data

extended
data

Source: Fraud and Data Availability Proofs: Maximising Light Client Security and Scaling Blockchains with

Dishonest Majorities (Link)

A 1DRS only needs the data root hash. Conversely, the root size in 2DRS is much larger

because it includes every row and column hash, as well as the data root hash. It is worth the

sacrifice as fraud proof sizes drop from a size similar to downloading all data to O(-Vn log(-Vn)),

which is around the length of the square, which is significantly smaller than the area. It also

lowers the proof size and verification cost from log n to log -Vn, a small saving.

With 2D Reed Solomon, sampling once gives -25% confidence, rather than 50% with a 1D

Reed Solomon. It's a small trade-off, as sampling 20 times still gives over 99.5% confidence.

For a 1-in-a-million confidence level, asymptotically (i.e., assuming a large dataset), LCs need

to sample -50 times (compared to 20 in the 1DRS case).

24

www.relain.org

The upshot is that, compared to lDRS, using 2DRS reduces the computation burden on

LCs, particularly for producing fraud proofs. The downside is larger block header sizes.

[Celestia's use of] 2DRS reduces the computation burden on LCs,

particularly for producing fraud proofs.

From these first principles, we've seen how and why Celestia's DAS works. Avail's DAS and

likely Danksharding's DAS have different designs. For example, Avail extends data only

along the vertical axis. However, the fundamental concepts are the same.

Primitive 2: Dispersal Protocols,

Used by EigenDA
A dispersal protocol can improve scalability while still guaranteeing data availability.

Dispersal protocols disperse a dataset to multiple nodes, such that each node does not

store the entire dataset, but the network collectively holds the full dataset. A benefit is

lower hardware requirements for nodes.

There is a trade-off between data robustness and total storage requirements. Let's explore

the two extremes of this spectrum:

Case A

Node1

Full dataset

Node2 nodes. Each node }
Dispersed across 3

'---'--'===----' ��N-od�e�3 �1
holds 1/, of all items

CaseB

Full dataset

:============'.::::':=========: nodes. Each node Node2 I

Node1 I } Dispersed across 3

�========� holds the full set of
�---�N�od�e�3 ___ �I items

These two methods are simple but not very useful. Case B can hardly be called a dispersal

protocol. Things get more complicated in the middle.

Let's define two important measures:

• Byzantine threshold: the percentage of malfunctioning or dishonest nodes the

system can withstand. The Byzantine threshold is 0% in Case A and 67% (more

precisely, 1-in-n) in Case B.

• Storage blowup: the increase in total storage space required by all the nodes. The

storage blowup is lx in Case A and 3x (more precisely, O(n)) in Case B.

25

www.relain.org

As you can see, there is a trade-off between these two measures. Cases A and B sit at the

extreme ends of this tradeoff. (Another important measure is the communication

complexity, but we will ignore that in this description for simplicity.)

Next, we attempt to design a protocol that makes a tradeoff between these two measures.

Here is a simple protocol where the full data can be recovered as long as <33% of the

parties are Byzantine:

Full dataset

Node2 I

Node1

}===N:=od;:e=:3==�------�I

Dispersed across 3

nodes. Such that any 2

has the full dataset

Notice that if Node 1 misbehaves, Nodes 2 and 3 combined still have the full dataset. The

same is true if either Node 2 or Node 3 misbehaves; the other two combined always have

the full dataset.

In our simple protocol, we have a 33% Byzantine threshold and a storage blowup of 2x.

Since we have 3 nodes, each node holds½ of the full dataset, saving space for the

individual nodes.

This may seem adequate, but there are some problems. First, it doesn't scale. What if we

had 30 nodes instead? A simplistic way to do this is to duplicate what we had 10 times. The

storage blowup will be much larger, perhaps more in the order of 20x. Second, it has a 33%

Byzantine threshold only in the worst-case scenario, where all nodes that fail happen to

hold the same subset of data. This makes it inefficient.

It is possible to achieve protocols that scale better.

AVID is a protocol introduced about 20 years ago that EigenDA's dispersal protocol is

partly based on (EigenDA team published a paper<6J on ACeD which builds upon AVID and

CMT. However, it has made changes in its current design. For example, it will likely use KZG

rather than CMT.) AVID achieves much better trade-offs, and importantly, it scales well.

AVID-RBC, one of AVID's variants, is able to achieve a 33% Byzantine threshold with a

storage blowup of 1.5x (plus a constant overhead), regardless of the number of nodes. In

our example with 3 nodes, AVID-RBC achieves 1.5x vs. our 2x. More importantly, the

storage blowup is 1.5x + a constant, regardless of how many nodes there are, unlike our

simple protocol.

Like DAS, AVID achieves this by using erasure codes.

26

www.relain.org

Technical Explanation

We explain a simplified version of AVID as a way to understand this intuitively:

Assume there are n nodes. For a t = n/3 Byzantine threshold, we need to increase the

data size by 1.5x via erasure codes. In other words, for a (k, n)-erasure code, n/k = 1. 5.

(Note that by convention, k is the size of the original message and n is the size of the

coded message).

Next, we split the codes into n chunks and, after creating a hash signature for each,

require each node to hold one of the n chunks.

We can see how, by doing this, as long as½ nodes are honest and functional, the

original data can be recovered via erasure codes. The storage blowup, assuming a

reliable broadcast (RBC), is therefore:

n:t
+ 0(1)

This is 1.5x + a constant, when t = n/3, regardless of how large n is.

Compared to AVID, EigenDA's dispersal protocol has a slightly less efficient storage

blowup (it scales logarithmically with the block size) but has much better

communication complexity.

With a dispersal protocol, as more nodes join the system, the storage burden per node

drops. This makes EigenDA very scalable, at least from a storage hardware requirement

perspective.

With a dispersal protocol, as more nodes join the system, the

storage burden per node drops. This makes EigenDA very scalable,

at least from a storage hardware requirement perspective.

EigenDA relies on its dispersal protocol both to reduce hardware requirements and as the

basis of its DA guarantees. The protocol parameters can be set such that the protocol can

resist up to½ faulty nodes, making it resemble a typical PoS consensus safety threshold.

DA is guaranteed as long as the threshold percentage of nodes is honest. Therefore, DAS is

not used.

27

www.relain.org

Primitive 3: KZG, Used by Avail,

EigenDA, and Danksharding
KZG has useful features that Avail uses to speed up DA finality.

KZG is a cryptographic commitment scheme with several useful properties. Just like Merkle

trees, a common commitment scheme, KZG allows Party A to commit to a value (e.g., a

dataset) and later use that commitment to prove specific elements (e.g., specific points in

the dataset) belong to that committed dataset.

Unlike Merkle trees, KZG uses polynomials, a mathematical expression. Polynomials

have many useful features, which makes KZG better for certain use cases.

Advantages of KZG over Merkle trees:

• Proof sizes and verification time for KZG are constant 0(1), while they scale

logarithmically for Merkle Trees, i.e., O(log n).

• KZG is also partially homomorphic, a mathematical property that can lead to useful

features. For example, homomorphism makes it infeasible for block producers to

create erroneous erasure codes (provided commitments are done correctly). This,

along with other design decisions, allows Avail to avoid the need for fraud proof for

block headers, a key differentiator vs. Celestia. Another example, homomorphism

enables batch proofs, where a single proof can be used for multiple elements.

• KZG also integrates better with zk-proof systems. In fact, many zk-proof schemes

utilize KZG.

Disadvantages:

• KZG is more computationally intensive. Although both KZG and Merkle trees have

constant commitment sizes, many implementations of KZG result in larger

commitment sizes in absolute terms.

• Requires a trusted setup.

• KZG is not quantum resistant because it relies on elliptic curve cryptography. Merkle

trees are believed to be quantum resistant.

We won't dive into the mechanics of KZG, since that might be beyond the depth we are

aiming for in this specific report. If you are interested, you can read the KZG paper(7J or

Dankrad Feist's blog post on KZG(8l. Instead, we will elaborate on one of the points we

made earlier about KZG's advantage of being partially homomorphic.

28

www.relain.org

Let's see how KZG thwarts a specific attack. In a 2D Reed Solomon (a la Celestia),

compromised consensus nodes can produce incorrect erasure codes. For simplicity, let's

assume validators produce a block where erasure codes are "junk" data, but all

commitments are computed correctly over that "junk" data. This is a sensible scenario

because computing erasure codes is more expensive than hashing.

LCs use these Merkle roots for data availability sampling. Notice that the system does not

work if the Merkle roots are wrong in the first place.

Block producer actions: Light client actions:

□□□□■■■■
□□□□□□□□□
DDDDDDDDD 3.Lightclient

□□□□□□□□□
samples a data
point, and FSN

DODOO DOD respondswith

■□□□ □□□
Merkle proof
(dotted box). The

:l-88-8 B 8 B-1 B-: ..--- �:��\:
i
:�:�ig��,

W0O0ODODO'
client

DA is no longer guaranteed, yet light nodes will not detect this with DAS. As far as light

nodes are concerned, all data points exist and are correct.

To counter this, Celestia has a fraud-proof mechanism where full nodes can challenge a

block header. This allows Celestia to have security guarantees against certain attacks that

are above the security of the Celestia chain. The downside of this "optimistic" approach is

that LCs need to wait for a challenge period before performing DAS.

With KZG, this particular attack will not work. With KZG, LCs can check the commitments of

the extended data without downloading the full dataset. Fraudulent validators may attempt

two things, but either can be detected by LCs:

• Compute the commitments of the junk data, as before. This won't work because LCs

can directly verify the correctness of these commitments.

• Compute the correct values for commitments Cn+1...C2n, but keep the junk data.

This won't work either because now DAS will fail on any "junk" data, unlike with

2DRS.

29

www.relain.org

Technical Explanation

Suppose full nodes perform a similar attack by producing "junk" codes and commitments

based on the junk data. As before, a proof will appear correct to the LC. However, the

homomorphic nature of KZG means that LCs can check that the commitments on extended

data Cn+1 ... C2n are correct using C1 ... Cn (the reason is beyond the scope of this report, but

note that it is not possible with hash functions used in 2D Reed Solomon).

Block producer actions:

□□□□�
□□□□[s]
□□□□El
□[][]□�
□tYJ□■
□□□□■
□□□□■
□□□□■

, '-.Jf'
1. "Junk" codes 2. KZG commitments

based on "junk"
codes

Light client actions:

□□□□Cs]
□□□□[s]
□□□□El,
DEIJD�\
□ □■,'
□□□□■"
□□□□■
□□□□■

3. However, light
client can derive
KZG commitments
of coded data
directly, due to
homomorphism.
Light clients will
discover that KZG
commitments of
codes are
incorrect

Suppose now that the full nodes still produce incorrect erasure codes. But instead,

commitments for extended data are derived based on the original data commitments. In

this case, any proof of inclusion of the extended data will be invalid.

Block producer actions:

1 a. "Junk" codes

1b. KZG
commitments
based on correct
data

Light client actions:

□□□□CsJ
□□□□CsJ
□□□□EJ
□�□�
[J □BJ
□□□□is;;]
□□□□EJ
r□□■□@J: I�

2. KZG
verification will
fail because
data is invalid

The designs of Avail and Danksharding are still in progress. However, this illustrates how

KZG has useful features that can thwart certain attacks on incorrect erasure coding and

ultimately avoid the need for a challenge period.

30

www.relain.org

Rather than requiring clients to check the commitments the way we described, Avail's (and

probably Danksharding's) current design requires the block producer to produce a validity

proof that the erasure codes are correct. This "pessimistic" approach means that LCs do

not need to wait for a challenge period before DAS, enabling faster DA finality. This is one of

Avail's key differentiators.

[Avail's} "pessimistic" approach means that LCs do not need to wait

for a challenge period before DAS, enabling faster DA finality. This is

one of Avail's key differentiators.

KZG's useful features have other use cases. For example, it is used by EigenDA, but not in

this manner. We will not elaborate on this in this report, for brevity's sake.

Outlook

Now that you have some idea of what DA is all about and how these different projects are

tackling the issue, we can think about some potential effects this may have on the crypto

markets in the coming weeks and months.

1. Dedicated DA layers as R&D for full Danksharding?

❖ We can somewhat think of dedicated DA layers as conducting part of the

research and development ("R&D") for full Danksharding; helpful code and

lessons learnt from these dedicated DAs will be able to be implemented

into Danksharding by Ethereum.

❖ Or is there an alternative universe where Ethereum stops developing

Danksharding and focuses its attention elsewhere? Remember, full

Danksharding is a multi-year endeavor. If the likes of Celestia, EigenDA,

Avail, and others can attain good market share and efficiency in this market,

it might not make much sense for Ethereum to continue towards full

Danksharding, at least not as a primary focus.

❖ The interesting thing is that they all take different approaches (EigenDA,

Avail, and Celestia) and make trade-offs.

► Different latency vs. bandwidth trade-offs, e.g., how much

communication must happen vs. how hard it is to re-construct blocks

31

www.relain.org

vs. whether you use a commitment scheme or not

► It will be important to see which DA layer users prefer the (don't

forget, the users of dedicated DA layers are rollup developers).

❖ In the most likely scenario that Ethereum continues to work on full

Danksharding, there will be a long list of lessons that it can continuously take

from these projects in the next years of development.

2. New types of dApps

❖ It's less about cheaper rollups, but more about newer use cases and new

types of dApps that developers can create with cheaper fees and a new DA

model. Projects are more likely to attempt high-throughput dApps (e.g.,

DePIN, AI) on L2s. From a developer perspective, EIP-4844 and dedicated

DA layers have the potential to build new business models around fees

and the sequencer.

❖ That said, the competitiveness of Ethereum L2s is increasing, likely opening

the gates for even more L2s than we have already seen. Many were

waiting for the first few to try out Celestia, while others were waiting for

EIP-4844. Despite the positive impact of EIP-4844 so far, fees are likely to

increase and somewhat normalize in the coming weeks and months as more

L2s launch and transaction volume rises.

❖ The real moat of a DA layer is arguably the ecosystem that gets built using

it and around it - this is what ultimately drives the activity and traction of a

DA layer. It will be important to monitor which project is able to attract the

most projects to use it and further its ecosystem.

3. Better user experience

❖ Affordable fees will encourage users to interact with more dApps and

increase on-chain activity.

❖ Can L2 developers fully subsidize activity for users? Maybe with EIP-4844

you can do that or be close to it if you're a dApp with a profitable model.

► The concept of getting rid of gas or providing a gas subsidy could

lead to a whole new wave of Web3 dApps.

► Remember, every chain is now cheap and more competitive, so the "I

have lower fees" argument is less of a differentiator compared to

before.

32

www.relain.org

4. With DA getting closer to being optimized, does execution become the

bottleneck to true scalability?

5. What is next for DA layers?

❖ Value accrual is minimal as of now. There probably has to be some level of

vertical integration in the future if DA layers are to become more profitable.

❖ Is there a further question of DA layers becoming commoditized i.e., largely

identical and offering a similar service? Does this lead to a further race to

zero for fees?

As you can see, we are very much at the beginning of the DA conversation, with many

problems worth considering and questions to be answered in the next few years.

Closing Thoughts

The DA protocol designs we explored uncovered a trilemma between scalability, security,

and finality.

Security

(threshold)

0

Dank­

sharding

Scalability

Avail
Finality

time

The placement of individual projects here is for illustrative purposes only, as a single dot is not a good way to

represent design tradeoffs. It is based on current design and public information, which are fast-changing.

Celestia's and Avail's use of DAS brings high security (1- or 0-of-n honest full node

requirement). Avail's use of KZG improves finality time, but at the cost of scalability to some

extent. EigenDA relies on a dispersal protocol, which makes it more scalable but at the cost

of security (honest supermajority requirement). All these still rely on the crypto-economic

security of staked tokens to ultimately maintain the integrity of the protocol, whether it is

33

www.relain.org

native tokens or restaked ETH. Danksharding does away with this by directly integrating

with Ethereum Ll to inherit full crypto-economic security. However, the tradeoff is lower

scalability, as Ethereum will not be optimized for DA.

Different design decisions put protocols at an advantage on certain factors (like the use of

KZG creating better time to finality). While true at a fundamental level, their

implementations and optimizations matter a great deal too. We would likely see KPI

comparisons that constantly shift as these protocols continue to mature. For example, just

because EigenDA uses a dispersal protocol does not mean it will always have higher

throughput, if another protocol does a better job at optimizing itself.

Also, it is yet to be seen which factor users care most about - is it cost, security, time to

finality, etc.? Some projects may not care about the differences, and other factors such as

proximity, familiarity, adoption, integrations, tooling, etc. may matter more. If so, this may

put Danksharding at an advantage, as it can directly tap into Ethereum's large adoption.

There is also the existential question about what DA layers are really enabling. Is it really

about scalability? Note that scalability, despite often being touted as the biggest problem in

blockchain, has really only been a problem for the top couple of protocols. Or is it about

creating a new landscape that is more modular and potentially more decentralized? Or is it

about making it easier to bootstrap new chains (possible by combining a DA layer with a

settlement layer)?

These remain open questions, which may be answered as the sector develops over the next

few years.

34

www.relain.org

References

1. https :// eth ereu m .org/ en/ developers/docs/data-availability/

2. https://mirror.xyz/1kx.eth/gEzEkg XP6arUOrvGp2cxjZ86vVMTmaXFdDiJax-z4I

3. https://arxiv.org/abs/1809.09044

4. https://arxiv.org/abs/2011.00102

5. https://github.com/availproject/data-availability/blob/master/reference%20docum

ent/Data%20Availability%20-%20Reference%20Document.pdf

6. https://arxiv.org/abs/2011.00102

7. https://www.iacr.org/archive/asiacrypt2010/64 77178/64 77178.pdf

8. https://dankradfeist.de/ethereum/2020/06/16/kate-polynomial-commitments.html

35

www.relain.org

About Binance Research

Binance Research is the research arm of Binance, the world's leading cryptocurrency

exchange. The team is committed to delivering objective, independent, and comprehensive

analysis and aims to be the thought leader in the crypto space. Our analysts publish

insightful thought pieces regularly on topics related (but not limited) to the crypto

ecosystem, blockchain technologies, and the latest market themes.

Derek Ho

Protocol Specialist

Derek is a Protocol Specialist at Binance, where he

analyzes protocols for their technical design,

feasibility, performance, and security. He works with

various teams, aiding in understanding and assessing

different technologies. He enjoys reading whitepapers,

mathematical formulas, and blockchain code. He

holds an engineering degree from Cambridge

University.

Shivam Sharma

Macro Researcher

Shivam is currently working for Binance as a macro

researcher. Prior to joining Binance, he worked as an

investment banking associate and analyst at Bank of

America on the Debt Capital Markets desk,

specializing in European financial institutions. Shivam

holds a BSc in Economics degree from the London

School of Economics & Political Science ("LSE") and

has been involved in the cryptocurrency space since

2017. Follow him on X: @Sh_ivam.

36

www.relain.org

